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Small-world properties of the Indian railway network
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Structural properties of the Indian railway network is studied in the light of recent investigations of the
scaling properties of different complex networks. Stations are considered as ‘‘nodes’’ and an arbitrary pair of
stations is said to be connected by a ‘‘link’’ when at least one train stops at both stations. Rigorous analysis of
the existing data shows that the Indian railway network displays small-world properties. We define and esti-
mate several other quantities associated with this network.
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Given a chance, how would we have possibly organiz
our train travel? People dislike changing trains to reach th
destinations. Therefore an extreme possibility would be
run a single train passing through all stations in the coun
so that no change of train is needed at all! An obvious d
advantage in this strategy is that the average distance
tween the stations becomes very large and so, also, the
needed for travel. The other limiting situation would be
run a train between any pair of neighboring stations and
to travel along the minimal paths. This requires a change
train at every station, which is also clearly not economica
viable. Railway networks in no country in the world follow
either of the two ways, actually they go midway. Like a
other transport system the main motivation of railways is
be fast and economical. To achieve it, railways simu
neously run many trains, covering short as well as lo
routes so that a traveller does not need to change more
only a few trains to reach any arbitrary destination in t
country.

In this paper we analyze the structure of the Indian r
way network ~IRN!. This is done in the context of recen
investigations of the scaling properties of several comp
networks, e.g., social, biological, computational netwo
@1#, etc. Identifying the stations as nodes of the network a
a train which stops at any two stations as the link betw
the nodes we measure the average distance between an
trary pair of stations and find that it depends only logari
mically on the total number of stations in the country. Wh
from the network point of view this implies the small-wor
nature of the railway network, in practice a traveller has
change only a few trains to reach an arbitrary destinat
This implies that over the years, the railway network h
evolved with the sole aim of becoming fast and economic
eventually its structure has become a small-world netw
@2#.

The structure and properties of several social, biologi
and computational networks like the World Wide We
~WWW! @3#, network of the Internet structure@4#, neural
networks@5#, collaboration network@6#, etc., have been stud
ied recently with much interest. In general a network ha
number of ‘‘nodes’’ and some ‘‘links’’ connecting differen
pairs of nodes. Typically the following quantities are defin
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to characterize a network ofN nodes:~i! the diameter is the
maximum distance between an arbitrary pair of nodes,~ii !
the clustering coefficientC(N) is the average fraction of con
nected triplets,~iii ! the probability distributionP(k) that an
arbitrarily selected node has the degreek, i.e., this node is
linked to otherk nodes.

Watts and Strogatz@2# proposed a model of small-world
network~SWN! in the context of various social and biolog
cal networks. They argued that SWN’s must have small
ameters which grow as lnN like random networks but should
have large values of the clustering coefficientsC(N);1 like
regular networks. On the other hand the scale-free netwo
~SFN! are characterized by the power law decay of the
gree distribution function:P(k);k2g. It was observed later
that the degree distributions of nodes for two very import
networks, e.g., the World Wide Web@3#, which is a network
of web pages and the hyperlinks among various pages,
the Internet network@4# of routers or autonomous system
have a scale-free property. Baraba´si and Albert ~BA! pro-
posed a model for SFN which grows from an initial set
nodes and at every time step some additional nodes are
troduced which are randomly connected to the previo
nodes with the linear attachment probabilities@7#. All scale-
free networks are believed to display small-world propert
while a small-world network is not necessarily scale free

Networks defined on the Euclidean space have also g
erated much interest in recent times. The Internet, trans
systems, postal networks, etc., are naturally defined on t
dimensional space. In these generalized networks the att
ment probabilities depend jointly on the nodal degrees
well as the lengths of the links@8,9#.

A railway network is one of the most important exampl
of transport systems. The very complex topological str
tures of railway networks have attracted the attention of
searchers in many different contexts. For example the fra
nature of the structure of railway networks was studied
Benguigui @10#. Very recently the efficiency of the Bosto
subway network has been studied where a different mea
for such networks has been proposed@11#.

Our scheme is to associate first a representative graphGN
with the IRN of N stations in the following way. Here the
stations represent the nodes of the graph, whereas two
trary stations are considered to be connected by a link w
©2003 The American Physical Society06-1
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there is at least one train which stops at both the statio
These two stations are considered to be at unit distanc
separation irrespective of the geographical distance betw
them. Therefore the shortest distance, i j between an arbi-
trary pair of stationssi and sj is the minimum number of
different trains one needs to board to travel fromsi to sj .
Thus , i j 51 implies that there is at least one train whi
stops at bothsi andsj . Similarly, , i j 52 implies that there is
no train which stops at bothsi andsj and one has to chang
the train at least once in some intermediate station to bo
the second train to reachsj . With this definition, if the trains
t1 , t2 , . . . , tn pass through a stationsi , then all the sta-
tions through which thesen trains pass are unit distanc
away from si and are considered as first neighbors ofsi .
Consequently, the numberki of such stations is the degree
the nodesi .

Indian railway network is a densely populated network
more than 8000 stations where the number of trains plyin
this network is of the order of 10 000@12#. However, we
collected the data of IRN on a coarse-grained level follow
the recent Indian railways timetable ‘‘Trains at a Glanc
@13# containing the important trains and stations in Ind
This table contains a total ofL5579 trains coveringN
5587 stations in a total of 86 tables. A grand rectangu
matrix G(N,L) is then constructed such that thei j th element
of this matrix is 1 if the trainj stops at the stationi, otherwise
this element is zero. A second matrixT(0:N,N) is also con-
structed where the degreeki of the stationi is stored at the
elementT(0,i ) and the serial numbers of theki neighbors of
i are stored at the locationsT( j ,i ), j 51,ki , the rest of the
elements being zero. We define and estimate the follow
quantities for the IRN.

SinceGN is a connected graph, there areN(N21)/2 dis-
tinct shortest paths among theN stations. We calculate th
probability distribution of the shortest path lengths Prob(,).
The shortest path lengths are calculated using a burning
gorithm @14# and using the matrixT. In this algorithm the
fire starts from an arbitrary nodei, and burns this node a
time t50. At time t51 the fire burns allki neighbors ofi. At
time t52 all unburnt neighbors ofki nodes are burnt and s
on. The burning time of a node is the length of the short
path of that node from the nodei. This calculation has bee
repeated for allN nodes to getN(N21)/2 shortest distances
In Fig. 1 inset we plot this distribution which goes to a ma
mum of,55 implying that one needs to change at most fo
trains to reach any station from any station in India on
coarse-grained level. Similarly the distribution has a pea
,52 implying that one can go to the majority of stations
India by changing train only once. In the graph theory t
diameter of a graph is measured by the maximum dista
between the pairs of nodes. Therefore according to this d
nition the diameter of our network is exactly equal to
However, the average shortest path between an arbitr
selected pair of nodes which we call as the mean dista
D(N) is also a measure of the topological size of the gra
and have been used by many authors to measure the si
networks as described in Ref.@7#. We therefore measure th
mean distanceD(N) of the railway network ofN stations as
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the average shortest distance^, i j & between an arbitrary pai
of stationssi and sj . We obtainD(N)'2.16 for this net-
work.

It is desirable to see howD(N) varies withN @15#. Since
we have the data of a single railway network, we divide t
whole IRN into 25 different subsets consisting of trains a
stations of 10 different states, 7 different combinations
states, 7 different railway zones, and the whole IRN. As
result we obtained 25 data points~though they are not nec
essarily nonoverlapping samples!, reflecting the nature of
variation ofD(N) with N. In Fig. 1 we plot these data on
semilog scale and though there are some wild fluctuations
small values ofN, for large values ofN the linear behavior is
quite apparent. The whole range is fitted withD(N)5A
1Bln(N) whereA'1.33 andB'0.13.

The clustering coefficientC(N) is defined in the following
way. Let the subgraphGi consisting of the neighbors ofsi ,
i.e., (s1 , s2 , s3 , . . . , ski

) haveEi links among them. Then

the clustering coefficientCi of the nodei is 2Ei /ki(ki21)
and that of the whole network isC5^Ci&. A direct measure of
the clustering coefficient of the whole IRN gives:C'0.69
~Fig. 2!. The high value of the clustering coefficient is e
plained in the following way. The numberns of stations in
which a particular train stops are all at unit distance from o
another on the network and therefore form anns clique.
Therefore if only one train stops at some stationi then Ci
51. When two trains stop at the stationi and the setsns(1)
andns(2) of stations covered by these two trains are diff
ent, Ci is in general smaller than 1. However, there may
other trains which do not stop ati but stop at the stations
which are not in bothns(1) andns(2). These trains enhanc
the value ofCi . The value ofC'0.69 is compared with a
corresponding random graph network having the same n
ber of vertices and edges as in IRN with the edges distribu
randomly. It is found that the number of edges in IRN

FIG. 1. The variation of the mean distanceD(N) of 25 different
subsets of IRN having different number of nodes (N). The whole
range is fitted with a function likeD(N)5A1Bln(N), whereA
'1.33 andB'0.13. The inset shows the distribution Prob(,) of
the shortest path lengths, on IRN. The lengths varied to a maxi
mum of only five link lengths and the network has a mean dista
D(N)'2.16.
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SMALL-WORLD PROPERTIES OF THE INDIAN . . . PHYSICAL REVIEW E67, 036106 ~2003!
19 603. If these edges are distributed randomly within
maximum possible edges on a graph ofN5587 nodes the the
clustering coefficient should be 19 603/@N(N21)/2#
'0.113 which is the same as Prob~1!. We also compute a
modified clustering coefficientCo by counting in Ei only
those links in the subgraphGi which pass through the nodei.
We obtained a valueCo'0.55 for the IRN.

Recently, the study of the clustering coefficient as a fu
tion of the degree of the node of some real-world netw
has shown an interesting feature@17# C(k), defined as the
clustering coeffcient of the node with degreek, showing a
decrease~apparently a power-law decay! with k in several
networks like the actor, language, or World Wide Web n
works. However, in the network of the Internet at the rou
level or power grid network of the western U.S.,C(k) was
found to be more or less a constant. In the IRN also, we
that C(k) ~Fig. 3! remains at a constant value close to un
for smallk and shows a logarithmic decay at larger values
k. In all these real-world networks whereC(k) remains more
or less a constant, the nodes are linked by physical con
tions which may be responsible for this common featu
However, in this context it should also be mentioned that
scale-free Baraba´si-Albert network @7# also predictsC(k)
}k0 andC(N)}N20.75. In the IRN, althoughC(N) shows a
decrease withN, it is apparently much slower than a pow
law.

The degree distribution of the network, that is, the dis
bution of the number of stationsk which are connected by
direct trains to an arbitrary station is denoted byP(k). We
plot the cumulative degree distributionF(k)5*k

`P(k)dk us-
ing a semilog scale in Fig. 4 for the whole IRN. We see t
F(k) approximately fits to an exponentially decaying dist
bution F(k);exp(2ak) with a50.0085.

We also calculated the distributionD(nt) of the number
of trainsnt which stop at an arbitrary station. This is plotte

FIG. 2. Variation of the clustering coefficientC(N) of 25 differ-
ent subsets of IRN having different number of nodesN. Starting
from a somewhat higher value at a small number of nodes,
clustering coefficient decreases slowly on increasingN and finally
saturates at 0.69.
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in Fig. 5 on a semilog scale after scaling by the avera
number of trainŝnt&'12.06 along both the abscissa and t
ordinate. The data are binned as before and is fitted to
exponential form:Dt(nt)^nt&5aexp(2bx) with x5nt /^nt&,
a'0.47, andb'0.75.

The distributionD(ns) of the number of stations throug
which an arbitrary train passes is plotted in Fig. 6. The d
are scaled by the average number of stations^ns&'12.37
along both the abscissa and the ordinate. TheD(ns) grows
very fast at the beginning, reaches a maximum, and t
decays to zero. A numerical fit to a functional form lik
Ds(ns)^ns&5ax4/(x21b)3 with x5ns /^ns&, a'0.6, andb
'0.096 turns out to be reasonably good.

We also measure the connectivity correlation of IRN fo
lowing the works of Ref.@16#. Let F(k8uk) denote the con-
ditional probability that a node of degreek has a neighbor of
degreek8. Then to see how the nodes of different degrees
correlated we measure the average degree^knn(k)&
5Sk8k8F(k8uk) of the subset of nodes which are all neig

e

FIG. 3. The variation of the clustering coefficientC(k) against
the degreek for the IRN indicates a logarithmic decay for largek.

FIG. 4. The cumulative degree distributionF(k) of the IRN
with the degreek is plotted on the semilogarithmic scale.
6-3
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bors to a particular node of degreek. In general this average
has a variation likê knn(k)&;k2n where a nonzeron re-
flects a nontrivial correlation among the nodes of the n
work. We calculated̂knn(k)& for IRN and plotted it in Fig. 7
on a double logarithmic scale. Almost over a decade
^knn(k)& remains same on the average and is independen
k, indicating the absence of correlations among the node
different degrees.

FIG. 5. Scaled probability distributionDt(nt) for an arbitrary
station through whichnt trains pass wherênt&'12.06. Binned
data are presented through the circles connected by lines whic
best to an exponential form:Dt(nt)^nt&5aexp(2bx) with x
5nt /^nt&, a'0.47, andb'0.75.

FIG. 6. Scaled probability distributionDs(ns) for an arbitrary
train passing throughns stations wherê ns&'12.37. Binned data
are presented through the black dots connected by lines whic
best to the form:Ds(ns)^ns&5ax4/(x21b)3 with x5ns /^ns&, a
'0.6, andb'0.096.
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A more sensitive measure for the degree correlations
proposed in Ref.@18#. Newman has defined a degree-degr
correlation functionr which measures whether a vertex
high degree at one end of a link prefers a vertex ofhigh
degree~‘‘assortative mixing,’’r .0) or low degree~‘‘disas-
sortative mixing,’’ r ,0) at the other end. It has been o
served that social networks are assortative and technolog
and biological networks are disassortative. We have m
sured for IRN the normalized correlation function followin
Ref. @18# and found its values to ber 520.033. This indi-
cates that the IRN is ofdisassortativenature, i.e., rich verti-
ces at one end of a link show some preference towards p
vertices at the other end, and vice versa.

To summarize, we investigated the structural properties
the Indian railway network to see if some of the gene
scaling behavior obtained for many complex networks in
cent times may also be present in IRN. While nodes of
network are evidently the stations, the links are defined
the pairs of stations communicated by single trains. W
such a definition of link, the mean distance of the network
a measure of how good is the connectivity of the netwo
Indeed, we observed that the mean distance of IRN va
logarithmically with the number of nodes with a high valu
of the clustering coefficient. This implies that IRN behav
like a small-world network, which we believe should be typ
cal of the railway network of any other country, which w
are unable to study at present for unavailability of data.

We would like to thank I. Bose for constantly encouragi
us to work on this problem and also to S. Goswami
suggesting Ref.@13#. P.S. acknowledges financial suppo
from DST grant SP/S2-M11/99. G.M. acknowledges the h
pitality of the S. N. Bose National Center.
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FIG. 7. The variation of the average degree^knn(k)& of the
neighbors of a node of degreek with k. After some initial fluctua-
tions, ^knn(k)& remains almost the same over a decade arounk
530–300 indicating the absence of correlations among the node
different degrees.
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